

Maximising Value from Lateritic Nickel Ore

Company Profile by As at 19 January 2020

subsidiary Queensland Pacific Metals, is focused on developing and implementing innovative processing technologies. PM1 aims to build a new treatment plant near Townsville, Queensland to produce nickel sulphate and cobalt sulphate.

KEY ELEMENTS OF STRATEGY

The strategy consists of the following three key elements:

- 1. Import quality (1.6% Ni) lateritic ore feed from New Caledonia
- 2. Use the DNi Process[™] to produce a mixed hydroxide precipitate (MHP)
- 3. Partner with CSIRO to refine the MHP into nickel sulphate and cobalt sulphate

KEY OUTCOMES IF SUCCESSFUL

- 1. Access to high grade lateritic ore feed from New Caledonia over multiple decades
- Proving the advantageous, competitive and scalable DNi Process[™] at commercial scale
- 3. Produce value added nickel and cobalt products attractive to Li-ion battery raw materials manufacturers

CORPORATE OVERVIEW (AUD)

Shares	479.5 million ordinary fully paid shares	
Options	21 May 2022: 40 million \$0.03 unlisted options	
	21 Dec 2022: 30 million \$0.03 unlisted options	
Share Price	\$0.016	
Market	¢7.7 million	
Capitalisation	<i>\$7.7</i> mmon	
Cash	\$2.1 million as at 30 September 2019	

⇒ Share price and trading volume are responsive to both company announcements and nickel prices

PRE-FEASIBILITY STUDY HIGHLIGHTS		
Release Date	December 2019	
Lead Engineer	Lycopodium Minerals Pty Ltd	
Project	Lansdown Industrial Precinct,	
Location	40km west of Townsville	
Design Life	30 years (likely longer operating life)	
	⇒ Life not limited by mineral resource	

PRE-FEASIBIL	ITY STUDY HIGHLIGHTS	
Ore Feed	565,714 (wet) tpa	
	1.60% nickel, 0.18% cobalt	
	46.6% iron	
	3.02% magnesium	
	1.69% aluminium	
Nickel Product	26,398 tpa of nickel sulphate	
Cobalt Product	3,097 tpa of cobalt sulphate	
Co-products	327,665 tpa 66% iron ore fines	
	20,079 tpa magnesia	
	9,920 tpa aluminium hydroxide	
Processing	Stage 1: DNI Process to produce MHP	
	Stage 2: CSIRO Process to upgrade MHP to	
Capoy	LIS\$200 million (LLIS\$40 million contingonou)	
Capex	\Box Capital cost is moderate v HPAL projects	
	\Rightarrow Capital cost is moderate v HPAL projects	
Opoy	US\$0.56/lb Ni (after by product credits)	
Motal Prico	Nickol LIS\$7/lb + \$2/lb culphate promium	
and Exchange	Cobalt LIS $25/lb$	
Rate	Iron ore US $\frac{886}{t} + 20\%$ high grade premium	
Assumptions	Magnesia A\$450/t	
	Aluminium hydroxide US\$160/t	
	A\$ 1 = US\$ 0.68	
EBITDA	A\$124 million per annum	
NPV and IRR	Pre-tax: A\$880 million and 25.7%	
	Post-tax: A\$568 million and 20.1%	
Ore Source	• Agreement in place for the supply of high-	
	grade nickel-cobalt lateritic ore from New	
	Caledonia	
	• 10 years from the date of first ore supply	
	Additional 5-year option	
	Minimum grade 1.6% Ni	
	• Société des Mines de la Tontouta (SMT) has	
	currently four nickel mines with operating	
	permits ranging from 2022 to 2039	
	 Societe Miniere Georges Montagnat (SMGM) 	
Logistico	owns and operates three nickel mines	
Logistics	Close proximity to New Caledonia minimising ocean freight costs	
Infrastructure	• Townsville has all the infrastructure to receive	
	lateritic ore from New Caledonia: port, road,	
	rail, power and water	
Acid Supply	 Sulphuric acid produced in Townsville 	
	• Nitric acid produced in Gladstone (850km)	
	95% of nitric acid recycled	
Construction	• Standard grade stainless steel is suitable to	
Material	handle nitric acid	
Labour	Skilled workforce available regionally	
Possible	 Imperium3 planning to construct a battery factories. 	
Оп-таке	factory in Townsville	
	nups://www.ims.com.au/australasia/	
NEXT STEPS		
1. Process	s optimisation (both ore processing and refinery)	
2. Recommissioning of the pilot plant to test the flowsheet		
and produce samples for potential off-take partners		
3. Comme	encement of Definitive Feasibility Study	
4. Progres	sion of environmental studies and regulatory	
approv	als	

5. Further engagement with end users, market intermediaries and other strategic investors aiming for product off-take agreements

Compiled by JF Bertincourt, Director, Terra Studio, www.terrastudio.biz

John Downie, Managing Director +61 408 329 262 jdownie@qpmetals.com.au www.pureminerals.com.au

DNi Process v HPAL

	DNi Process	HPAL	Benefit or Drawback
Ore Feed	Full lateritic ore profile	Limonitic ore (typically, or low Mg saprolite as Mg increases acid consumption)	⇒ DNi is more flexible
Ore Preparation	Ore drying	No drying required	⇒ DNi requires more energy
Acid Leach	Nitric acid leach, 95% recycled 30-80kg of nitric acid (68%) per tonne of ore processed 1 atmosphere 100°C	Sulphuric acid leach, consumed 250-300kg of sulphuric acid (98%) per tonne of ore processed Up to 44 atmospheres 250°C	 ⇒ Reduced operating costs due to acid recycling ⇒ Additional safety required for HPAL
Plant material	304-series stainless steel (leach tanks with Teflon coating to prevent abrasion)	Titanium-lined autoclaves and piping	 Reduced capital expenditure due to off the shelf materials used for plant construction
Waste	Environmentally inert dry nitrogen-rich residue, contributing to mine rehabilitation as a fertiliser	Tailings about 3x the volume of the DNi Process requiring neutralisation, containment and indefinite monitoring	 ⇒ Reduced capital expenditure (no tailings storage facility required ⇒ Reduced environmental bond
By-products	Iron ore fines, magnesia, aluminium hydroxide, scandium	Ammonium sulphate, scandium	 Additional revenue ⇒ Diversification of revenue
Scale	Modest plant size is feasible	Large capacity required to reach economic threshold	 ⇒ Reduced technical and financial risks ⇒ Possible modular construction

KEY RISKS AND MITIGANTS		
Geological, Mining, Logistics and	 Mitigated by the large mineral resources available, the multiple mines and the long history of ore supply from New Caledonia to Townsville 	
risks	 New Caledonia has the world's largest laterite reserves 50 Mt of (wet) lateritic ore have been imported and processed in Townsville over 30 years 	
Processing	 Nitric acid is powerful but expensive Nitric acid recycling is one of the keys of the DNi Process The MHP product is saleable, providing an alternative product offering and reducing risk should the refinery experience commissioning issues Although not demonstrated at commercial scale, the DNi Process presents a number of advantages: technical, environmental and financial 	
Financial	 Plant capital expenditure is in the order of US\$300 million PM1 is looking to mitigate the financing risk by establishing a joint venture with Li-ion battery raw material manufacturer 	
Market	 The nickel market outlook is excellent: Successive deficits since 2015 Low official inventories Consistent growth from the stainless steel market Booming market demand from the battery sector although from a currently low base Please visit Terra Studio's website to access a presentation on the nickel market outlook www.terrastudio.biz 	

DISCLAIMER & DISCLOSURE OF INTEREST - This document is provided in good faith from sources believed to be accurate and reliable. Terra Studio Pty Ltd directors and employees do not accept liability for the results of any action taken on the basis of the information provided or for any errors or omissions contained therein. Readers should seek investment advice from their professional advisors before acting upon information contained herein. The views expressed in this document accurately reflect the personal views of Jean-François Bertincourt about the subject and its related securities. The author do not hold an economic interest in the securities included in this document. The production of this document has been sponsored by Pure Minerals Ltd.